

Head Office: 2nd Floor, Grand Plaza, Fraser Road, Dak Bunglow, Patna - 01

JEE Main 2023 (Memory based)

31 January 2023 - Shift 2

Answer & Solutions

PHYSICS

1. Match the radiation listed in column-I with their uses listed in column-II correctly.

Column-I	Column-II
A) UV rays	P) Physiotherapy
B) Infra Red rays	Q) Treatment of cancer
C) X-Rays	R) Lasik eye surgery
D) Microwave rays	S) Aircraft navigation

- A. A S, B P, C R, D Q
- $\mathsf{B}. \quad A-R, \ B-P, \ C-Q, \ D-S$
- C. A Q, B P, C S, D RD. A - R, B - P, C - S, D - Q
- **D**. II I, **D** 1, **C** 2

Answer (B)

Solution:

UV rays are used for Lasik eye surgery. IR is used for physiotherapy. X-Rays are used for cancer treatment. And Microwaves are used for aircraft navigation.

- 2. During an adiabatic process performed on a diatomic gas 725 *J* of work is done on the gas. The change in internal energy of the gas is equal to
 - A. 495 J
 - B. 725 J
 - C. 225 J
 - D. Zero

Answer (B)

Solution:

For adiabatic process, Q = 0So, $\Delta U + W = 0$ Work done on gas will be negative $\Delta U - 725 = 0 \Rightarrow \Delta U = 725 J$

- 3. Two balls are projected with equal speed (40 m/s), one at an angle of 30° and other at 60° with horizontal. Find the ratio of maximum heights of both the balls.
 - A. 1/4
 - B. 3/1
 - C. 1/3
 - D. 4/1

Answer (C)

Solution:

Maximum height of projectile can be given as:

 $H_{max} = \frac{u^2 \sin^2 \theta}{2g}$

Ratio of Maximum heights for same velocity:

 $Ratio = \frac{\sin^2 30^\circ}{\sin^2 60^\circ} = \frac{1}{3}$

- 4. Find ionization energy of 2^{nd} excited state of Li^{2+} . It is given that ionization energy of ground state of hydrogen atom is 13.6 eV.
 - A. 20.4 eV
 - B. 27.2 eV
 - C. 6.8 *eV*
 - D. 13.6 eV

Answer (D)

Solution:

For Li^{+2} ion in 2^{nd} excited state, Z = 3 and n = 3.

Ionisation energy can be calculated as:

$$E = 13.6(3)^2 \left[\frac{1}{3^2} - 0 \right] = 13.6 \, eV$$

5. A ball of mass 1 kg is hanging from 1 m long inextensible string which can withstand maximum tension of 400 N. Find the maximum speed *u* that should be given to the ball.

и

A. $\sqrt{390} m/s$

- B. $\sqrt{410} m/s$
- C. 20 m/s
- D. 22 m/s

Answer (A)

6. Match the physical quantities given in Column-I with the physical dimensions in column-II

Column-I	Column-II
(A) Torque	$(P) ML^{-1}T^{-2}$
(B) Stress	$(Q) ML^2T^{-2}$
(\mathcal{C}) Pressure Gradient	(R) $ML^{-2}T^{-2}$
(D) Angular momentum	(S) ML^2T^{-1}

Α.	A - S, B - P, C - R, D - Q
В.	A - Q, $B - P$, $C - R$, $D - S$
C.	A - P, $B - S$, $C - R$, $D - Q$
D.	A - Q, $B - P$, $C - S$, $D - R$

Answer (B)

Solution:

$$\begin{split} [\tau] &= [r][F] = [L][MLT^{-2}] = [ML^{2}T^{-2}] \\ [Stress] &= \frac{[F]}{[A]} = \frac{[MLT^{-2}]}{[L^{2}]} = [ML^{-1}T^{-2}] \\ [Pressure Gradient] &= [P]/[Z] = \frac{[ML^{-1}T^{-2}]}{[L]} = [ML^{-2}T^{-2}] \\ [Angular Momentum] &= [\tau][t] = [ML^{2}T^{-2}][T] = [ML^{2}T^{-1}] \end{split}$$

- 7. A lens of refractive index 1.5 and focal length 15 *cm* in air is submerged in water. Change in focal length of lens is $(\mu = 4/3)$
 - A. 45 cm
 - B. 60 cm
 - C. 30 cm
 - D. 10 cm

Answer (A)

Solution:

When lens is placed in air,

$$\frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
$$\frac{1}{15} = \left(\frac{1.5}{1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \dots \dots \dots (1)$$

When submerged in water ($\mu = 4/3$)

$$\frac{1}{f'} = \left(\frac{1.5}{4/3} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \dots \dots \dots (2)$$

Diving equation (1) and (2)

$$\frac{f'}{15} = \left(\frac{0.5 \times 4}{0.5}\right) \Rightarrow f' = 60 \ cm$$

 $\Delta f = f' - f = 60 - 15 = 45 \, cm$

- **8.** In a moving coil galvanometer, number of turns in the coil are increased to increase the current sensitivity by 50%. Find percentage change in voltage sensitivity.
 - A. -50 %
 - B. 50 %
 - C. No change
 - D. 25%

Answer (C)

Solution:

Current sensitivity: $\frac{\theta}{I} = \frac{nAB}{K}$

Voltage sensitivity $=\frac{naB}{KR}$

As current sensitivity increases by 50% so, number of turns increases by 50 %

Resistance increases by 50 %

Therefore, voltage sensitivity remains constant.

9. The equation of two simple harmonic motions are given by

 $y_1 = 10 \sin\left(\omega t + \frac{\pi}{3}\right)$ and $y_2 = 5\left[\sin(\omega t) + \sqrt{3}\cos(\omega t)\right]$. The amplitude of resultant S. H. M. is

- A. 10 m
- B. 20 m
- C. 5 m
- D. 15 m

Answer (B)

Solution:

 $y_{1} = 10 \sin\left(\omega t + \frac{\pi}{3}\right)$ $y_{2} = 5\left[\sin(\omega t) + \sqrt{3}\cos(\omega t)\right] = 10 \sin\left(\omega t + \frac{\pi}{3}\right)$ Resultant of the SHM $y_{resultant} = y_{1} + y_{2}$ $= 10 \sin\left(\omega t + \frac{\pi}{3}\right) + 10 \sin\left(\omega t + \frac{\pi}{3}\right)$ $= 20 \sin\left(\omega t + \frac{\pi}{3}\right)$ Amplitude = 20 m

10. A body has weight *W* on the surface of earth. Find the weight at a height 9 *times* the radius of earth.

A. W/100

- B. W/81
- **C**. *W*/64
- D. W/121

Answer (A)

From (1) and (2), $W' = \frac{W}{100}$

11. A wire is first coiled in *n* circular turns and current *I* is run through it. Now the same wire is coiled in *N* circular turns and same current *I* is run through it. If B_1 and B_2 are the magnetic field at centre of two coil respectively then $\frac{B_1}{B_2}$ is equal to

Answer (B)

Solution:

Let the length of wire is l, Radius of the first coil $R_1 = \frac{l}{2\pi n}$ Radius of the second coil $R_2 = \frac{l}{2\pi N}$ $B_1 = \frac{\mu_0 nI}{2R_1} = \frac{\mu_0 nI}{\frac{2l}{2\pi n}} = \frac{\mu_0 \pi n^2 I}{l}$ $B_2 = \frac{\mu_0 NI}{2R_2} = \frac{\mu_0 NI}{\frac{2l}{2\pi N}} = \frac{\mu_0 \pi N^2 I}{l}$ $\frac{B_1}{B_2} = \left(\frac{n}{N}\right)^2$

- **12.** For a medium, it is given that: Young's modulus = $3.2 \times 10^{10} N/m^2$, Density = $8000 kg/m^3$. Find the speed of sound in this medium.
 - A. 1000 m/s
 - B. 2000 m/s
 - **C**. 500 *m*/*s*
 - D. 4000 m/s

Answer (B)

$$v_s = \sqrt{\frac{Y}{\rho}}$$
$$= \sqrt{\frac{3.2 \times 10^{10}}{8000}}$$
$$= 2000 \text{ m/s}$$

- **13.** When current of 4 *Amperes* is made to run through a resistance of *R* ohms for 10 seconds, it produces heat energy of *H* units. Now if 16 *Amperes* of current is made to flow through same resistance for 10 seconds then heat energy produced will be:
 - A. 16 H
 - B. 4*H*
 - C. 8*H*
 - D. 2*H*

Answer (A)

Solution:

 $H = i^{2}Rt = 4^{2} \times R \times 10 = 160R$ $H' = I^{2}Rt = 16^{2} \times R \times 10 = 2560R = 16H$

- **14.** Across an inductor of 5mH, an *AC* source with potential given as $268 \sin(200\pi t)$ volts is used. The value of inductive reactance provided by inductor is equal to
 - Α. 2π Ω
 - B. π/2 Ω
 - C. $20\pi \Omega$
 - **D**. *π* Ω

Answer (D)

Solution:

 $\chi_L = \omega L = 200\pi \times 5 \times 10^{-3} = \pi \ \Omega$

15. In a series *RLC* circuit, $R = 80 \Omega$, $X_L = 100 \Omega$, $X_C = 40 \Omega$. If the source voltage is 2500 cos(628t) *Volts*, Find peak current (*in Amperes*)

Answer (25)

Solution:

$$Z = \sqrt{R^2 + (X_L - X_c)^2}$$

= $\sqrt{80^2 + (100 - 40)^2}$
= 100 \Omega

$$\Rightarrow I_0 = \frac{V_0}{Z} = \frac{2500}{100} A = 25 A$$

16. A body moving horizontally has an initial speed of 20 m/s. Due to friction, body stops after 5 sec. If mass of body is 5 kg, coefficient of friction is x/5. Find x. (Take $g = 10 m/s^2$)

Answer (0.4)

Solution:

u = 20m/s t = 5 s $f_{friction} = \mu mg$ $a = \frac{f_{friction}}{m} = -\mu g$ $v = u + at = 20 + (-\mu g)(5)$ $0 = 20 - 50\mu$ $\mu = 0.4$

17. A ball was dropped from 20 m height from ground. Find the height (*in* m) up to which it rises after the collision. (Use $e = \frac{1}{2}$, $g = 10 m/s^2$)

Answer (5)

Solution:

18. Two discs of same mass, radii r_1 , r_2 , thickness 1 mm and 0.5 mm, have densities in the ratio 3:1. the ratio of their moment of inertia about diameter is 1: x. Find x.

Answer (6)

Solution:

Mass of both disc is equal:

So,
$$M_1 = M_2$$

 $\pi r_1^2 h_1 \rho_1 = \pi r_2^2 h_2 \rho_2$
 $r_1^2 \times \frac{h_1}{h_2} \times \frac{\rho_1}{\rho_2} = r_2^2$
 $\Rightarrow r_1^2 \times 2 \times \frac{\rho_1}{\rho_2} = r_2^2$
 $\Rightarrow \frac{r_1^2}{r_2^2} = \frac{\rho_2}{2\rho_1} = \frac{1}{6}$ $\left(\therefore \frac{\rho_2}{\rho_1} = \frac{1}{3} \right)$

Ratio of MOI:

$$\frac{\frac{1}{4}Mr_1^2}{\frac{1}{4}Mr_2^2} = \frac{r_1^2}{r_2^2} = \frac{1}{6}$$

19. Two wavelengths $\lambda_1 = 600 nm$ and $\lambda_2 = 800 nm$ are used in a *YDSE* experiment. Their maxima coincide at certain locations on the screen. Find the minimum separation (in mm) between such a location and central maxima. It is given that d = 0.35 mm and D = 7 m.

Answer (48)

Solution:

$$n_1 \times \frac{\lambda_1 D}{d} = n_2 \times \frac{\lambda_2 D}{d}$$

$$\Rightarrow 6n_1 = 8n_2$$

$$\Rightarrow Maximum, n_1 = 4 \text{ and } n_2 = 3$$

So, first coincidence is the 4th maxima of $\lambda = 600 nm$ with third maxima of wavelength 800 nm $Min. separation = 4 \times \frac{600 \text{ nm} \times 7 \text{ m}}{0.35 \text{ mm}} = 48 \times 10^{-3} \text{ m} \Rightarrow Min. separation = 48 \text{ mm}$

20. A particle is in uniform circular motion with time period 4 s and radius $\sqrt{2} m$. Find the magnitude of displacement (*in m*) is 3 s.

Answer (2)

$$\theta = \frac{3}{4} \times 2\pi = \frac{3\pi}{2}$$

$$\Rightarrow |Displacement| = \sqrt{2} R = 2 m$$