Head Office: 2nd Floor, Grand Plaza, Fraser Road, Dak Bunglow, Patna - 01
JEE Main 2023 (Memory based)
31 January 2023 - Shift 2
Answer \& Solutions

## PHYSICS

1. Match the radiation listed in column-I with their uses listed in column-II correctly.

| Column-I | Column-II |
| :--- | :--- |
| A) UV rays | P) Physiotherapy |
| B) Infra Red rays | Q) Treatment of <br> cancer |
| C) X-Rays | R) Lasik eye <br> surgery |
| D) Microwave <br> rays | S) Aircraft <br> navigation |

A. $A-S, B-P, C-R, D-Q$
B. $A-R, B-P, C-Q, D-S$
C. $A-Q, B-P, C-S, D-R$
D. $A-R, B-P, C-S, D-Q$

## Answer (B)

## Solution:

UV rays are used for Lasik eye surgery.
IR is used for physiotherapy.
X-Rays are used for cancer treatment.
And Microwaves are used for aircraft navigation.
2. During an adiabatic process performed on a diatomic gas 725 J of work is done on the gas. The change in internal energy of the gas is equal to
A. 495 J
B. 725 J
C. 225 J
D. Zero

Answer (B)

## Solution:

For adiabatic process, $Q=0$
So,
$\Delta U+W=0$
Work done on gas will be negative
$\Delta U-725=0 \Rightarrow \Delta U=725 \mathrm{~J}$
3. Two balls are projected with equal speed $(40 \mathrm{~m} / \mathrm{s})$, one at an angle of $30^{\circ}$ and other at $60^{\circ}$ with horizontal. Find the ratio of maximum heights of both the balls.
A. $1 / 4$
B. $3 / 1$
C. $1 / 3$
D. $4 / 1$

## Answer (C)

## Solution:

Maximum height of projectile can be given as:
$H_{\text {max }}=\frac{u^{2} \sin ^{2} \theta}{2 g}$
Ratio of Maximum heights for same velocity:
Ratio $=\frac{\sin ^{2} 30^{\circ}}{\sin ^{2} 60^{\circ}}=\frac{1}{3}$
4. Find ionization energy of $2^{\text {nd }}$ excited state of $L i^{2+}$. It is given that ionization energy of ground state of hydrogen atom is 13.6 eV .
A. 20.4 eV
B. 27.2 eV
C. 6.8 eV
D. 13.6 eV

## Answer (D)

## Solution:

For $\mathrm{Li}^{+2}$ ion in $2^{\text {nd }}$ excited state, $Z=3$ and $n=3$.
Ionisation energy can be calculated as:
$E=13.6(3)^{2}\left[\frac{1}{3^{2}}-0\right]=13.6 \mathrm{eV}$
5. A ball of mass 1 kg is hanging from 1 m long inextensible string which can withstand maximum tension of 400 N . Find the maximum speed $u$ that should be given to the ball.
A. $\sqrt{390} \mathrm{~m} / \mathrm{s}$
B. $\sqrt{410} \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $22 \mathrm{~m} / \mathrm{s}$

Answer (A)


## Solution:

$$
\begin{aligned}
& T=m g+m\left(\frac{v^{2}}{l}\right) \\
& 400=10+v^{2} / 1 \\
& v=\sqrt{390} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$


6. Match the physical quantities given in Column-I with the physical dimensions in column-II
Column-I Column-II
(A) Torque
(P) $M L^{-1} T^{-2}$
(B) Stress
(Q) $M L^{2} T^{-2}$
(C) Pressure Gradient
(R) $M L^{-2} T^{-2}$
(D) Angular momentum
(S) $M L^{2} T^{-1}$
A. $A-S, B-P, C-R, D-Q$
B. $A-Q, B-P, C-R, D-S$
C. $A-P, B-S, C-R, D-Q$
D. $A-Q, B-P, C-S, D-R$

## Answer (B)

## Solution:

$$
[\tau]=[r][F]=[L]\left[M L T^{-2}\right]=\left[M L^{2} T^{-2}\right]
$$

$$
[\text { Stress }]=\frac{[F]}{[A]}=\frac{\left[M L T^{-2}\right]}{\left[L^{2}\right]}=\left[M L^{-1} T^{-2}\right]
$$

$[$ Pressure Gradient $]=[P] /[Z]=\frac{\left[M L^{-1} T^{-2}\right]}{[L]}=\left[M L^{-2} T^{-2}\right]$
$[$ Angular Momentum $]=[\tau][t]=\left[M L^{2} T^{-2}\right][T]=\left[M L^{2} T^{-1}\right]$
7. A lens of refractive index 1.5 and focal length 15 cm in air is submerged in water. Change in focal length of lens is ( $\mu=4 / 3$ )
A. 45 cm
B. 60 cm
C. 30 cm
D. 10 cm

## Answer (A)

## Solution:

When lens is placed in air,
$\frac{1}{f}=\left(\frac{\mu_{2}}{\mu_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\frac{1}{15}=\left(\frac{1.5}{1}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$.
When submerged in water ( $\mu=4 / 3$ )
$\frac{1}{f^{\prime}}=\left(\frac{1.5}{4 / 3}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$.
Diving equation (1) and (2)
$\frac{f^{\prime}}{15}=\left(\frac{0.5 \times 4}{0.5}\right) \Rightarrow f^{\prime}=60 \mathrm{~cm}$
$\Delta f=f^{\prime}-f=60-15=45 \mathrm{~cm}$
8. In a moving coil galvanometer, number of turns in the coil are increased to increase the current sensitivity by $50 \%$. Find percentage change in voltage sensitivity.
A. $-50 \%$
B. $50 \%$
C. No change
D. $25 \%$

## Answer (C)

## Solution:

Current sensitivity:
$\frac{\theta}{I}=\frac{n A B}{K}$
Voltage sensitivity $=\frac{n a B}{K R}$
As current sensitivity increases by $50 \%$ so, number of turns increases by $50 \%$
Resistance increases by 50 \%
Therefore, voltage sensitivity remains constant.
9. The equation of two simple harmonic motions are given by
$y_{1}=10 \sin \left(\omega t+\frac{\pi}{3}\right)$ and $y_{2}=5[\sin (\omega t)+\sqrt{3} \cos (\omega t)]$. The amplitude of resultant S. H. M. is
A. 10 m
B. 20 m
C. 5 m
D. 15 m

## Answer (B)

## Solution:

$y_{1}=10 \sin \left(\omega t+\frac{\pi}{3}\right)$
$y_{2}=5[\sin (\omega t)+\sqrt{3} \cos (\omega t)]=10 \sin \left(\omega t+\frac{\pi}{3}\right)$
Resultant of the SHM
$y_{\text {resultant }}=y_{1}+y_{2}$
$=10 \sin \left(\omega t+\frac{\pi}{3}\right)+10 \sin \left(\omega t+\frac{\pi}{3}\right)$
$=20 \sin \left(\omega t+\frac{\pi}{3}\right)$
Amplitude $=20 \mathrm{~m}$
10. A body has weight $W$ on the surface of earth. Find the weight at a height 9 times the radius of earth.
A. $W / 100$
B. $W / 81$
C. $W / 64$
D. $W / 121$

Answer (A)

## Solution:

$W=\frac{G M_{e} m}{R_{e}^{2}}$
$W^{\prime}=\frac{G M_{e} m}{\left(R_{e}+9 R_{e}\right)^{2}} \ldots \ldots \ldots \ldots$.

From (1) and (2),
$W^{\prime}=\frac{W}{100}$
11. A wire is first coiled in $n$ circular turns and current $I$ is run through it. Now the same wire is coiled in $N$ circular turns and same current $I$ is run through it. If $B_{1}$ and $B_{2}$ are the magnetic field at centre of two coil respectively then $\frac{B_{1}}{B_{2}}$ is equal to
A. $\sqrt{\frac{n}{N}}$
B. $\left(\frac{n}{N}\right)^{2}$
C. $\frac{n}{N}$
D. $\frac{n^{3}}{N^{3}}$

## Answer (B)

## Solution:

Let the length of wire is $l$,
Radius of the first coil $R_{1}=\frac{l}{2 \pi n}$
Radius of the second coil $R_{2}=\frac{l}{2 \pi N}$
$B_{1}=\frac{\mu_{0} n I}{2 R_{1}}=\frac{\mu_{0} n I}{\frac{2 l}{2 \pi n}}=\frac{\mu_{0} \pi n^{2} I}{l}$
$B_{2}=\frac{\mu_{0} N I}{2 R_{2}}=\frac{\mu_{0} N I}{\frac{2 l}{2 \pi N}}=\frac{\mu_{0} \pi N^{2} I}{l}$
$\frac{B_{1}}{B_{2}}=\left(\frac{n}{N}\right)^{2}$
12. For a medium, it is given that: Young's modulus $=3.2 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$, Density $=8000 \mathrm{~kg} / \mathrm{m}^{3}$. Find the speed of sound in this medium.
A. $1000 \mathrm{~m} / \mathrm{s}$
B. $2000 \mathrm{~m} / \mathrm{s}$
C. $500 \mathrm{~m} / \mathrm{s}$
D. $4000 \mathrm{~m} / \mathrm{s}$

## Answer (B)

## Solution:

$$
\begin{aligned}
v_{s} & =\sqrt{\frac{Y}{\rho}} \\
& =\sqrt{\frac{3.2 \times 10^{10}}{8000}} \\
& =2000 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

13. When current of 4 Amperes is made to run through a resistance of $R$ ohms for 10 seconds, it produces heat energy of $H$ units. Now if 16 Amperes of current is made to flow through same resistance for 10 seconds then heat energy produced will be:
A. 16 H
B. $4 H$
C. 8 H
D. $2 H$

## Answer (A)

## Solution:

$$
\begin{aligned}
& H=i^{2} R t=4^{2} \times R \times 10=160 R \\
& H^{\prime}=I^{2} R t=16^{2} \times R \times 10=2560 R=16 H
\end{aligned}
$$

14. Across an inductor of $5 m H$, an $A C$ source with potential given as $268 \sin (200 \pi t)$ volts is used. The value of inductive reactance provided by inductor is equal to
A. $2 \pi \Omega$
B. $\pi / 2 \Omega$
C. $20 \pi \Omega$
D. $\pi \Omega$

## Answer (D)

## Solution:

$\chi_{L}=\omega L=200 \pi \times 5 \times 10^{-3}=\pi \Omega$
15. In a series $R L C$ circuit, $R=80 \Omega, \mathrm{X}_{\mathrm{L}}=100 \Omega, \mathrm{X}_{\mathrm{C}}=40 \Omega$. If the source voltage is $2500 \cos (628 t)$ Volts, Find peak current (in Amperes)

## Answer (25)

## Solution:

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{L}-X_{c}\right)^{2}} \\
& =\sqrt{80^{2}+(100-40)^{2}} \\
& =100 \Omega \\
\Rightarrow & I_{0}=\frac{V_{0}}{Z}=\frac{2500}{100} A=25 \mathrm{~A}
\end{aligned}
$$

16. A body moving horizontally has an initial speed of $20 \mathrm{~m} / \mathrm{s}$. Due to friction, body stops after 5 sec . If mass of body is 5 kg , coefficient of friction is $x / 5$. Find $x$. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$ )

## Answer (0.4)

## Solution:

$u=20 \mathrm{~m} / \mathrm{s}$
$t=5 s$
$f_{\text {friction }}=\mu m g$

$a=\frac{f_{\text {friction }}}{m}=-\mu g$
$v=u+a t=20+(-\mu g)(5)$
$0=20-50 \mu$
$\mu=0.4$
17. A ball was dropped from 20 m height from ground. Find the height (in m ) up to which it rises after the collision. (Use $e=\frac{1}{2}, g=10 \mathrm{~m} / \mathrm{s}^{2}$ )

## Answer (5)

## Solution:

$$
\begin{aligned}
& h=\frac{v^{2}}{2 g} \\
& v^{\prime}=e v \\
& h^{\prime}=\frac{\left(v^{\prime}\right)^{2}}{2 g}=\frac{e^{2} v^{2}}{2 g}=e^{2} h=0.5^{2} \times 20=\frac{20}{4}=5 \mathrm{~m} \\
& h^{\prime}=5 \mathrm{~m}
\end{aligned}
$$


18. Two discs of same mass, radii $r_{1}, r_{2}$, thickness 1 mm and 0.5 mm , have densities in the ratio 3 : 1 . the ratio of their moment of inertia about diameter is $1: x$. Find $x$.

## Answer (6)

## Solution:

Mass of both disc is equal:
So, $M_{1}=M_{2}$
$\pi r_{1}^{2} h_{1} \rho_{1}=\pi r_{2}^{2} h_{2} \rho_{2}$
$r_{1}^{2} \times \frac{h_{1}}{h_{2}} \times \frac{\rho_{1}}{\rho_{2}}=r_{2}^{2}$
$\Rightarrow r_{1}^{2} \times 2 \times \frac{\rho_{1}}{\rho_{2}}=r_{2}^{2}$

$\Rightarrow \frac{r_{1}^{2}}{r_{2}^{2}}=\frac{\rho_{2}}{2 \rho_{1}}=\frac{1}{6} \quad\left(\therefore \frac{\rho_{2}}{\rho_{1}}=\frac{1}{3}\right)$
Ratio of MOI:
$\frac{\frac{1}{4} M r_{1}^{2}}{\frac{1}{4} M r_{2}^{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}=\frac{1}{6}$
19. Two wavelengths $\lambda_{1}=600 \mathrm{~nm}$ and $\lambda_{2}=800 \mathrm{~nm}$ are used in a YDSE experiment. Their maxima coincide at certain locations on the screen. Find the minimum separation (in mm ) between such a location and central maxima. It is given that $d=0.35 \mathrm{~mm}$ and $D=7 \mathrm{~m}$.

## Answer (48)

## Solution:

$n_{1} \times \frac{\lambda_{1} D}{d}=n_{2} \times \frac{\lambda_{2} D}{d}$
$\Rightarrow 6 n_{1}=8 n_{2}$
$\Rightarrow$ Maximum,$n_{1}=4$ and $n_{2}=3$
So, first coincidence is the $4^{\text {th }}$ maxima of $\lambda=600 \mathrm{~nm}$ with third maxima of wavelength 800 nm Min. separation $=4 \times \frac{600 \mathrm{~nm} \times 7 \mathrm{~m}}{0.35 \mathrm{~mm}}=48 \times 10^{-3} \mathrm{~m} \Rightarrow$ Min. separation $=48 \mathrm{~mm}$
20. A particle is in uniform circular motion with time period $4 s$ and radius $\sqrt{2} \mathrm{~m}$. Find the magnitude of displacement (in $m$ ) is 3 s .

## Solution:

$\theta=\frac{3}{4} \times 2 \pi=\frac{3 \pi}{2}$
$\Rightarrow \mid$ Displacement $\mid=\sqrt{2} R=2 \mathrm{~m}$

